Find the equation of a line that contains the points (3,7) and (-6, 4). Write the equation in slope-intercept form, using
fractions when required.

Respuesta :

Answer:

[tex]y=\frac{1}{3} x+6[/tex]

Step-by-step explanation:

[tex](3,7)(-6,4)[/tex]

Step 1. Find the slope (by using the slope-formula)

m = slope

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\frac{4-7}{-6-3}[/tex]

[tex]m=\frac{-3}{-9}[/tex]

[tex]m=\frac{3}{9}[/tex]

[tex]m=\frac{1}{3}[/tex]

Step 2. Write the equation (using the slope and the points)

Here's how to do it:

Slope-intercept Formula [tex]y=mx+b[/tex] whrere m = slope and b = y-intercept

Plug in the slope into the Slope-intercept Formula

[tex]y=\frac{1}{3} x+b[/tex]

Find the y-intercept (b) by using a point and substituting their x and y values

[tex]y=\frac{1}{3} x+b[/tex]

Point: (3, 7)

[tex]7=\frac{1}{3} (3)+b[/tex]

[tex]7=1+b[/tex]

[tex]b=7-1[/tex]

[tex]b=6[/tex]

Step 3. Write the equation in Slope-intercept form

[tex]y=mx+b[/tex]

[tex]y=\frac{1}{3} x+6[/tex]