Find the height of the triangle by applying formulas for the area of a triangle and
your knowledge about triangles.

A. 5.8 mm
B. 2.0 mm
OC. 4.4 mm
D. 6.2 mm

Find the height of the triangle by applying formulas for the area of a triangle and your knowledge about triangles A 58 mm B 20 mm OC 44 mm D 62 mm class=

Respuesta :

Answer:

Step-by-step explanation:

a= 12 mm ; b = 16 mm  ; c = 18 mm

s = (a + b+c)/2

[tex]=\dfrac{12 + 16 + 8}{2}\\\\= \dfrac{36}{2}\\\\= 18\\\\[/tex]

s -a =  18 -  12 = 6 mm

s  -b = 18 - 16 = 2 mm

s  -c = 18 - 8 = 10 mm

[tex]area = \sqrt{s(s -a)(s-b)(s-c)}[/tex]

       [tex]= \sqrt{18*6*2*10}\\\\= \sqrt{2160 }\\\\=46.47\\\\=46 \ mm^{2}\\[/tex]

[tex]\dfrac{1}{2}* \ base * \ height = 46\\\\\dfrac{1}{2}*16* \ height = 46\\\\height = \dfrac{46*2}{16}\\\\[/tex]

  = 5.75

Height = 5.8 mm

Answer:

A. 5.8mm

Step-by-step explanation:

[tex]area \: of \: triangle = \sqrt{s(s - a) \times (s - b) \times (s - c)} \\ s = \frac{a + b + c}{2} \\ s = \frac{12 + 8 + 16}{2} \\ s = 18 \\ area \: of \: triangle \: = \sqrt{18(18 - 12) \times (18 - 8) \times (18 - 16)} \\ = \sqrt{2160} \\ = 46.47 {m}^{2} \\ area \: of \: triangle \: = \frac{1}{2} \times base \times height \\ 46.47 = \frac{1}{2} \times 16 \times h \\ h = \frac{46.47}{8} \\ h = 5.8mm[/tex]