Respuesta :

f(x) = 4x^2 + 48x + 10
f(x) = 4(x^2 + 12x) + 10
f(x) = 4(x^2 + 12x + 36) + 10
f(x) = 4(x + 6)^2 + 10

Answer:

The vertex from of the given function is [tex]f(x)=4(x+6)^2-134[/tex].

Step-by-step explanation:

The given function is

[tex]f(x)=4x^2+48x+10[/tex]

[tex]f(x)=4(x^2+12x)+10[/tex]

If a expression is given as x²+bx, then add [tex](\frac{b}{2})^2[/tex] in the expression to make it perfect square.

Here b=12, so add and subtract [tex](\frac{12}{2})^2[/tex] in the parentheses.

[tex]f(x)=4(x^2+12x+6^2-6^2)+10[/tex]

[tex]f(x)=4(x^2+12x+6^2)+4(-6^2)+10[/tex]

[tex]f(x)=4(x+6)^2-4(36)+10[/tex]

[tex]f(x)=4(x+6)^2-144+10[/tex]

[tex]f(x)=4(x+6)^2-134[/tex]

Therefore the vertex from of the given function is [tex]f(x)=4(x+6)^2-134[/tex].