Respuesta :
Answer:
Hi,
[tex]u_{20}=30[/tex]
Step-by-step explanation:
[tex]u_n=u_1+(n-1)*r, \ r= commun\ ratio.\\u_4=u_1+3*r=6\\u_6=u_1+5r\\(u_6)^2=u_1^2+10ru_1+25r^2\\s_n=u_1+u_1+r+u_1+2r+...+u_1+10r=11*u_1+55r\\s_{11}=(u_6)^2+18\ \\\Longrightarrow\ u_1^2+10ru_1+25r^2+18=11u_1+55r\\\Longrightarrow\ 4r^2+2r-12=0\\\Longrightarrow\ 2r^2+r-6=0\\r=\dfrac{3}{2} \ or\ r=-2\ (excluded)\\\\u_1=6-3r=\dfrac{3}{2} \\\\\\\boxed{u_{20}=u_1+19*r=30}\\[/tex]
The value of the 20th term of the arithmetic series will be 30
What is arithmetic progression?
An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
Un = u₁+(n-1) x r
u₄ = u₁ +(3 x r)=6
u₆ = u₁ +5r
u₆²=u₁²+10ru₁+25r²+18=11u₁+55r
Sn= u₁+u₁+r+u₁+2r+.............u₁+10r= (11 x u₁) +55 r
4r²+2r-12=0
2r²+r-6=0
r=3/2
u₁=6-3r=3/2
u₂₀=u₁+(19 x r)= 30
Hence the value of the 20th term of the arithmetic series will be 30
To know more about arithmetic progression follow
https://brainly.com/question/6561461
#SPJ2