Respuesta :

The perimeter of a triangle is the summation of the three sides of the triangle. Base on the assumed values, the length of side BD is 2.

For [tex]\triangle ACD[/tex], the sides are: AC, AD and CD

So, the perimeter is:

[tex]P_{\triangle ACD} = AC + AD + CD[/tex]

For [tex]\triangle ABD[/tex], the sides are: AB, AD and BD

So, the perimeter is:

[tex]P_{\triangle ABD} = AB + AD + BD[/tex]

The difference in the perimeters is:

[tex]P_{\triangle ACD} - P_{\triangle ABD} =1 + \sqrt 3[/tex]

So, we have:

[tex](AC + AD + CD) - ( AB + AD + BD) =1 + \sqrt 3[/tex]

Open brackets

[tex]AC + AD + CD - AB - AD - BD =1 + \sqrt 3[/tex]

Evaluate like terms

[tex]AC + CD - AB - BD =1 + \sqrt 3[/tex]

Make BD the subject

[tex]BD = AC + CD - AB - (1 + \sqrt 3)[/tex]

The solution cannot be completed because the side lengths of [tex]\triangle ACD[/tex] and [tex]\triangle ABD[/tex] are not given; so, I will assume the following values.

[tex]AC =2; CD = 1; AB = \sqrt 3[/tex]

[tex]BD = AC + CD - AB - (1 + \sqrt 3)[/tex] becomes

[tex]BD = 2 + 1 + \sqrt 3 - (1 + \sqrt 3)[/tex]

Open bracket

[tex]BD = 2 + 1 + \sqrt 3 - 1 - \sqrt 3[/tex]

Evaluate like terms

[tex]BD = 2[/tex]

Base on the assumed values, the length of side BD is 2.

Read more about perimeters at:

https://brainly.com/question/6465134