Respuesta :

[tex]\\ \sf\longmapsto \dfrac{4}{m+m}\times \dfrac{4}{m-m}[/tex]

[tex]\\ \sf\longmapsto \dfrac{4\times 4}{(m+m)(m-m)}[/tex]

[tex]\boxed{\sf (a-b)(a+b)=a^2-b^2}[/tex]

[tex]\\ \sf\longmapsto \dfrac{16}{m^2-m^2}[/tex]

[tex]\\ \sf\longmapsto \dfrac{16}{0}[/tex]

[tex]\\ \sf\longmapsto \infty[/tex]

Answer:

(16-m^4)/m^2

Step-by-step explanation:

=([tex]\frac{4}{m}[/tex]+m)([tex]\frac{4}{m}[/tex]-m)

=[tex]\frac{4+m^2}{m}[/tex]*[tex]\frac{4-m^2}{m}[/tex]  (LCM)

[tex]\frac{16-m^4}{m^2}[/tex] (a-b)(a+b)