f(x) = Square root of quantity x plus seven. ; g(x) = 8x - 11 Find f(g(x)). (1 point)
f(g(x)) = 2 Square root of quantity two x plus one
f(g(x)) = 8 Square root of quantity x plus seven - 11
f(g(x)) = 8 Square root of quantity x plus four
f(g(x)) = 2 Square root of quantity two x minus one

Respuesta :

Answer:

2 sqrt(2x-1)

Step-by-step explanation:

f(x) = sqrt(x+7)

g(x) = 8x-11

f(g(x))=

Place g(x) in for x in the function f(x)

f(g(x)) = sqrt( 8x-11 +7)

          = sqrt( 8x -4)

Factor out 4

          = sqrt( 4(2x-1)

          = 2 sqrt(2x-1)

[tex]\\ \sf\longmapsto f(x)=\sqrt{x+7}[/tex]

[tex]\\ \sf\longmapsto g(x)=8x-11[/tex]

  • g(x) will be put on the place of x

[tex]\\ \sf\longmapsto f(g(x))=\sqrt{8x-11+7}[/tex]

[tex]\\ \sf\longmapsto f(g(x))=\sqrt{8x-4}[/tex]

[tex]\\ \sf\longmapsto f(g(x))=\sqrt{4(2x-1)}[/tex]

[tex]\\ \sf\longmapsto f(g(x))=2\sqrt{2x-1}[/tex]