Answer:
1/x
Step-by-step explanation:
[tex](x^{-3})^\frac{1}{3}[/tex]
To simplify this we need to apply property of exponents
(a^m ) ^n = a^mn
Multiply inside exponent with outside exponent
[tex](x^{-3})^\frac{1}{3}[/tex]
[tex]x^{-3}*^\frac{1}{3}[/tex]
-3 times 1/3 becomes -1
[tex]x^{-1}[/tex]
a^-m = 1/a^m
So [tex]x^{-1}= \frac{1}{x^1} = \frac{1}{x}[/tex]