Respuesta :

the answer to this problem would be log10y=x

Answer:

[tex]x = \log_b y[/tex]

Step-by-step explanation:

Using logarithmic rules:

[tex]\log a^x = x \log a[/tex]

[tex]\frac{\log x}{\log b} = \log_b x[/tex]

Given the equation:

[tex]y = b^x[/tex]

Taking log both sides we have;

[tex]\log y = \log b^x[/tex]

Apply the logarithmic rule:

[tex]\log y = x \log b[/tex]

Divide both sides by log b we have;

[tex]\frac{\log y}{\log b} = x[/tex]

Apply the logarithmic rule:

[tex]\log_b y = x[/tex]

or

[tex]x = \log_b y[/tex]

Therefore, the equation in logarithmic form is, [tex]x = \log_b y[/tex]