Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

[tex](fog)(6)=1161[/tex]

Step-by-step explanation:

It is given that [tex]f(x)=x^2+5[/tex] and [tex]g(x)=5x+4[/tex], then [tex](fog)(x)[/tex] can be written as:

[tex](fog)(x)=(5x+4)^2+5[/tex]

Upon solving the above equation, we get

[tex](fog)(x)=25x^2+16+40x+5[/tex]

[tex](fog)(x)=25x^2+40x+21[/tex]

Now,  [tex](fog)(6)[/tex] can be written as:

[tex](fog)(6)=25(6)^2+40(6)+21[/tex]

[tex](fog)(6)=900+240+21[/tex]

[tex](fog)(6)=1161[/tex]

Therefore, the value of [tex](fog)(6)[/tex] is 1161.