Respuesta :

Answer:


[tex]cos\Theta =\frac{4}{5}[/tex]



[tex]tan\Theta =\frac{3}{4}[/tex]


Step-by-step explanation:

Given : sin θ = 3/5

To Find : value of cos θ and tan θ

Solution :

use the identity:


[tex]sin^{2}\Theta +cos^{2}\Theta =1[/tex]


putting value of sin θ


⇒ [tex](\frac{3}{5})^{2} + cos^{2}\Theta =1[/tex]


⇒[tex]\frac{9}{25} +cos^{2}\Theta =1[/tex]


⇒[tex]cos^{2}\Theta = 1-\frac{9}{25}[/tex]


⇒[tex]cos^{2}\Theta = \frac{16}{25}[/tex]


⇒[tex]cos\Theta = \sqrt{\frac{16}{25}}[/tex]


⇒[tex]cos\Theta =\frac{4}{5}[/tex]


Thus , [tex]cos\Theta =\frac{4}{5}[/tex]

Now to find value of tan θ


Since we know that


⇒ [tex]tan\Theta =\frac{sin\Theta }{cos\Theta }[/tex]   (identity)


⇒[tex]tan\Theta =\frac{\frac{3}{5} }{\frac{4}{5} }[/tex]


⇒[tex]tan\Theta =\frac{3}{5}\div \frac{4}{5}[/tex]


⇒[tex]tan\Theta =\frac{3}{5}\times  \frac{5}{4}[/tex]


⇒[tex]tan\Theta =\frac{3}{4}[/tex]


Thus , the value of


[tex]tan\Theta =\frac{3}{4}[/tex]


[tex]cos\Theta =\frac{4}{5}[/tex]



Answer:

tan2θ=-24/7 in first quadrant

tan 1/2 θ = 1/2 first quadrant

sin 2 θ = 24/25 first quadrant

Step-by-step explanation:

this was more for me than you, i have to take a quiz, but for the ppl looking for these on the pre-calc homework, here