Answer:
Hence the confidence interval is ( 0.6745, 0.7422).
Step-by-step explanation:
Now the given are
Sample size = n = 1200
x = 850
Sample proportion is
[tex]\hat{p}=\frac{x}{n}=\frac{850}{1200}=0.7083[/tex]
We have to construct 99% confidence interval for the population proportion.
Formula Used:
[tex](\hat{p}-E , \hat{p}+E)[/tex]
Here E is a margin of error.
[tex]E =Zc\times\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}[/tex]
Zc = 2.58
[tex]E =2.58\times\sqrt{\frac{0.7083*(1-0.7083)}{1200}}\\\\E=2.58\times\sqrt{0.000172}=0.0339[/tex]
So confidence interval is ( 0.7083 - 0.0339 , 0.7083 + 0.0339)
= ( 0.6745 , 0.7422).