Respuesta :

Answer:

[tex]f(x) = \sum\limits^{\infty}_{n=0} \frac{-(1)^n\cdot x^n}{5^{n+1}}[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \frac{1}{5 + x}[/tex]

Required

The power series centered at [tex]x = 0[/tex]

We have:

[tex]f(x) = \frac{1}{5 + x}[/tex]

Factor out 5 from the denominator

[tex]f(x) = \frac{1}{5(1 + \frac{x}{5})}[/tex]

Rewrite as:

[tex]f(x) = \frac{\frac{1}{5}}{(1 + \frac{x}{5})}[/tex]

Further, rewrite as:

[tex]f(x) = \frac{1}{5}(1 + \frac{x}{5})^{-1}[/tex]

Expand the bracket

[tex]f(x) = \frac{1}{5}(1 - \frac{x}{5} + (\frac{x}{5})^2 - (\frac{x}{5})^3+..........)[/tex]

Evaluate all exponents

[tex]f(x) = \frac{1}{5}(1 - \frac{x}{5} + \frac{x^2}{25} - \frac{x^3}{125}+......)[/tex]

Open brackets

[tex]f(x) = \frac{1}{5} - \frac{x}{5^2} + \frac{x^2}{5^3} - \frac{x^3}{5^4}+......[/tex]

Notice the pattern as:

[tex]f(x) = \frac{1}{5} - \frac{x}{5^2} + \frac{x^2}{5^3} - \frac{x^3}{5^4}+......\± \frac{x^n}{5^{n+1}}[/tex]

So, the power series is:

[tex]f(x) = \sum\limits^{\infty}_{n=0} \frac{-(1)^n\cdot x^n}{5^{n+1}}[/tex]