Answer:
The right solution is "0.5545".
Step-by-step explanation:
According to the question,
The probability of having 6 or 7 males will be:
= [tex]P(6 \ males)+ P(7 \ males)[/tex]
= [tex]\frac{15_C_6\times 13_C_6}{28_C_{12}} + \frac{15_C_7\times 13_C_5}{28_C_{12}}[/tex]
= [tex]\frac{5005\times 1716+6435\times 1287}{30421755}[/tex]
= [tex]\frac{16870425}{30421755}[/tex]
= [tex]0.5545[/tex]