Answer:
Project A is more valuable than Project B given a positive discount rate.
Explanation:
Let us assume the Discount Rate be r and cash flow for year n be CFn
Also
Let us assume initial Investment be X
So,
NPV = ΣCFn ÷ (1+r)^n
NPVA = - X + 6500 ÷ (1 + r) + 4500 ÷ (1+r)^2 + 2500 ÷ (1+r)^3
NPVB = - X + 2500 ÷ (1+r) + 4500 ÷ (1+r)^2 + 6500 ÷ (1+r)^3
NPVA - NPVB = - X + 6500 ÷ (1+r) + 4500 ÷ (1+r)^2 + 2500 ÷ (1+r)^3 - (- X + 2500 ÷ (1+r) + 4500 ÷ (1+r)^2 + 6500 ÷ (1+r)^3)
= 4000 ÷ (1+r) - 4000 ÷ (1+r)^3 = 4000(1 ÷ (1+r) - 1 ÷ (1+r)^3)
In the case when
Ir > 0, 1 ÷ (1+r) > 1 ÷ (1+r)^3
So,
NPVA - NPVB > 0 => NPVA > NPVB