Cube root of the given expression [tex]\frac{16y^{4} }{x^{6} }[/tex] in simplest form is equals to [tex]\frac{2y }{x^{2} }\sqrt[3]{2y}[/tex].
" Cube root is defined as the number when multiply three times and produce result as one original number one time."
According to the question,
Given expression,
[tex]\frac{16y^{4} }{x^{6} }[/tex]
Cube root of the given expression is,
[tex]\sqrt[3]{\frac{16y^{4} }{x^{6} }} \\\\\implies \sqrt[3]{\frac{(2)^{3}(2) y^{3} (y)}{(x^{2}) ^{3} }}\\\\\implies \frac{2y}{x^{2} } \sqrt[3]{2y}[/tex]
Hence, cube root of the given expression [tex]\frac{16y^{4} }{x^{6} }[/tex] in simplest form is equals to [tex]\frac{2y }{x^{2} }\sqrt[3]{2y}[/tex].
Learn more about cube root here
https://brainly.com/question/12726345
#SPJ3