A quantity of 0.27 mole of neon is confined in a container at 2.50 atm and 298 Kand then allowed to expand adiabatically under two different conditions: (a) reversibly to 1.00 atm and (b) against a constant pressure of 1.00 atm. Calculate the final temperature in each case.

Respuesta :

Answer:

a) Hence, T = 207 K.

b) Hence, T2 = 226 K.

Explanation:

Now the given,

n = 0.27 moles ; P = 2.5 atm ; T = 298 K

a) γ = 5/3 since Ne is a monoatomic gas.

[tex](1 - \gamma )/\gamma = -2/5\\T1 P1^{(1-\gamma)/\gamma}=T2 P2^{(1-\gamma)/\gamma}\\T2 = T1(P1/P2)^{(1 - \gamma)/\gamma}\\T2 = 298 (2.5/1)^{-2/5}= 207 K\\[/tex]

Hence, T = 207 K

b) We know that,[tex]U = W = n Cv (T2 - T1) = -P (V2 - V1)[/tex]

[tex]n(3/2)R(T2 - T1) = -P( n R T2/P2 - n R T1/P1)\\3/2(T2 - T1) = -P (T2/P2 - T1/P1)[/tex]

But P = P2

[tex]3/2(T2 - T1) = -P2(T2/P2 - T1/P1)\\3/2(T2 - T1) = -T2 + P2T1/P1[/tex]

This gives us:

[tex]T2 = 2/5(P2/P1 + 3/2)T1\\T2 = 2/5 x (1 /2.5 + 3/2)/(298)\\T2 = 19/25 x 298 = 226 K[/tex]

Hence, T2 = 226 K