Respuesta :

Answer:

Step-by-step explanation:

1. Apply the Pythagoras theorem to determine the value of x, we have;

[tex]/Hyp/^{2}[/tex] = [tex]/Adj 1/^{2}[/tex] + [tex]/Adj 2/^{2}[/tex]

[tex]x^{2}[/tex] = [tex]15^{2}[/tex] + [tex]8^{2}[/tex]

   = 289

x = [tex]\sqrt{289}[/tex]

x = 17

2. Trigonometric ratios of <D.

i. Sin <D = [tex]\frac{opposite}{hypotenuse}[/tex]

              =  [tex]\frac{8}{17}[/tex]

ii. Cos <D = [tex]\frac{Adjacent}{Hypotenuse}[/tex]

                = [tex]\frac{15}{17}[/tex]

iii. Tan <D = [tex]\frac{Opposite}{Adjacent}[/tex]

                 = [tex]\frac{8}{15}[/tex]

3. Trigonometric ratios of <F.

i. Sin <F = [tex]\frac{opposite}{hypotenuse}[/tex]

             = [tex]\frac{15}{17}[/tex]

ii. Cos <F = [tex]\frac{Adjacent}{Hypotenuse}[/tex]

              =  [tex]\frac{8}{17}[/tex]

iii. Tan <F = [tex]\frac{Opposite}{Adjacent}[/tex]

               = [tex]\frac{15}{8}[/tex]