Respuesta :

Given:

Division problem:

[tex](4x^4-4x^2-x-3)\div (2x^2-3)[/tex]

To find:

The solution for the given division problem.

Solution:

We have,

[tex](4x^4-4x^2-x-3)\div (2x^2-3)[/tex]

Here, 4x^4-4x^2-x-3 is the dividend and (2x^2-3) is divisor.

Using the long division method we get

[tex]\underline{2x^2-3}|\overline{4x^4-4x^2-x-3}|\underline{2x^2+1}[/tex]

            [tex]\underline{4x^4-6x^2}[/tex]

                      [tex]2x^2-x-3[/tex]                      (After subtraction)

                      [tex]\underline{2x^2\quad \quad -3}[/tex]

                          [tex]\underline{\quad -x\quad}[/tex]                        (After subtraction)

Now,

[tex]\dfrac{4x^4-4x^2-x-3}{2x^2-3}=2x^2+1-\dfrac{x}{2x^2-3}[/tex]

Therefore, the required solution is [tex]2x^2+1-\dfrac{x}{2x^2-3}[/tex].