Respuesta :

Answer:

[tex]\frac{6x^2+12x-177}{x^2+x -30}=6+\frac{3}{x-5}+\frac{3}{x+6}[/tex]

Step-by-step explanation:

From the question we are told that:

Partial fraction is given as

[tex]\frac{(6x^2+12x-177)}{(x^2+x-30)}[/tex]

Factorized

[tex]6+\frac{6x+3}{x^2+x−30}[/tex]

[tex]\frac{6x+3}{(x-5)(x+6)}[/tex]

Generally the equation for Partial Fraction is mathematically given by

[tex]\frac{6x+3}{(x-5)(x+6)}=\frac{A}{x-5}+\frac{B}{x+6}[/tex]

Therefore

[tex]\frac{6x+3}{(x-5)(x+6)}=\frac{(x-5)B+(x+6)A}{(x-5)(x+6)}[/tex]

Since denominators are equal

[tex]6x+3=(x-5)B+(x+6)A[/tex]

[tex]6x+3=xA+xB+6A-5B[/tex]

[tex]6x+3=x(A+B)+6A-5B[/tex]

Collecting Coefficients respectively

[tex]A+B=6 .......(equ 1)[/tex]

[tex]6A- 5B=3.........(equ 2)[/tex]

Therefore

A=3

B=3

Hence, Partial fraction decomposition is

[tex]\frac{6x^2+12x-177}{x^2+x -30}=6+\frac{3}{x-5}+\frac{3}{x+6}[/tex]