Respuesta :

Nayefx

Answer:

[tex] \displaystyle B) {x} = \log_{6} 118[/tex]

Step-by-step explanation:

we would like to solve the following exponential equation:

[tex] \displaystyle 2 \cdot {6}^{x} = 236[/tex]

to do so divide both sides by 2 which yields:

[tex] \displaystyle {6}^{x} = 118[/tex]

take log of base 6 in both sides so that we can solve the equation for x by using [tex]\log_ab^c=c\log_ab[/tex] and that yields:

[tex] \displaystyle \log_{6} {6}^{x} = \log_{6} 118[/tex]

use the formula:

[tex] \displaystyle {x} = \log_{6} 118[/tex]

hence,

our answer is B)

Answer:

[tex]\boxed{\sf Option \ B }[/tex]

Step-by-step explanation:

A equation is given to us and we need to find out the value of x . The given equation is ,

[tex]\sf\dashrightarrow 2 \times 6^x = 236 [/tex]

Transpose 2 to RHS , we have ,

[tex]\sf\dashrightarrow 6^x = \dfrac{236}{2} [/tex]

Simplify ,

[tex]\sf\dashrightarrow 6^x =118 [/tex]

Use log both sides with base "6"

[tex]\sf\dashrightarrow log_6 ( 6^x) = log_6 118 [/tex]

Using the property of log ,

[tex]\sf\longmapsto \bigg\lgroup \red{\bf log_p q^r = r log_p q}\bigg\rgroup[/tex]

[tex]\sf\dashrightarrow x \ log_6 6 = log_6 118 [/tex]

Again we know that ,

[tex]\sf\longmapsto \bigg\lgroup \red{\bf log_p p= 1}\bigg\rgroup[/tex]

We have ,

[tex]\sf\dashrightarrow x \times 1 = log_6 118 [/tex]

Therefore ,

[tex]\sf\dashrightarrow\boxed{\blue{\sf x = log_6 118 }} [/tex]

Hence option B is correct .