Respuesta :
Answer:
[tex]\displaystyle d = \sqrt{65}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
Point A(3, 8)
Point B(-1, 1)
Step 2: Find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(-1 - 3)^2 + (1 - 8)^2}[/tex]
- [√Radical] (Parenthesis) Subtract: [tex]\displaystyle d = \sqrt{(-4)^2 + (-7)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{16 + 49}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{65}[/tex]
Answer:
8.1
Step-by-step explanation:
the person who posted before was correct! they just forgot to change the format of the answer, see their response for an accurrate explanation :)