Respuesta :

Answer:

[tex]a+b+c=10[/tex]

Step-by-step explanation:

We are given that the graph of the equation:

[tex]y=ax^2+bx+c[/tex]

Passes through the three points (0, 5), (1, 10), and (2, 19).

And we want to find the value of (a + b + c).

First, since the graph passes through (0, 5), its y-intercept or c is 5. Hence:

[tex]y=ax^2+bx+5[/tex]

Next, since the graph passes through (1, 10), when x = 1, y = 10. Substitute:

[tex](10)=a(1)^2+b(1)+5[/tex]

Simplify:

[tex]5=a+b[/tex]

The point (2, 19) tells us that when x = 2, y = 19. Substitute:

[tex](19)=a(2)^2+b(2)+5[/tex]

Simplify:

[tex]14=4a+2b[/tex]

This yields a system of equations:

[tex]\begin{cases} 5 = a + b \\ 14 = 4a + 2b\end{cases}[/tex]

Solve the system. We can do so using elimination (or any other method you prefer). Multiply the first equation by negative two:

[tex]-10=-2a-2b[/tex]

Add the two equations together:

[tex](-10)+(14)=(-2a+4a)+(-2b+2b)[/tex]

Combine like terms:

[tex]4 = 2a[/tex]

Hence:

[tex]a=2[/tex]

Using the first equation:

[tex]5=(2)+b\Rightarrow b=3[/tex]

Therefore, our equation is:

[tex]y=2x^2+3x+5[/tex]

Thus, the value of (a + b + c) will be:

[tex]a+b+c = (2) + (3) + (5) = 10[/tex]