Answer:
Diverges
General Formulas and Concepts:
Algebra I
- Exponential Rule [Dividing]: [tex]\displaystyle \frac{b^m}{b^n} = b^{m - n}[/tex]
Calculus
Limits
- Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Series Convergence Tests
- P-Series: [tex]\displaystyle \sum^{\infty}_{n = 1} \frac{1}{n^p}[/tex]
- Direct Comparison Test (DCT)
- Limit Comparison Test (LCT): [tex]\displaystyle \lim_{n \to \infty} \frac{a_n}{b_n}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}[/tex]
Step 2: Apply DCT
- Define Comparison: [tex]\displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{n^3}{n^4}[/tex]
- [Comparison Sum] Simplify: [tex]\displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{1}{n}[/tex]
- [Comparison Sum] Determine convergence: [tex]\displaystyle \displaystyle \sum^{\infty}_{n = 19} \frac{1}{n} = \infty , \ \text{div by P-Series}[/tex]
- Set up inequality comparison: [tex]\displaystyle\frac{8n^3 - 2n^2 + 19}{6 + 3n^4} \geq \frac{1}{n}[/tex]
- [Inequality Comparison] Rewrite: [tex]\displaystyle n(8n^3 - 2n^2 + 19) \geq 6 + 3n^4[/tex]
- [Inequality Comparison] Simplify: [tex]\displaystyle 8n^4 - 2n^3 + 19n \geq 6 + 3n^4 \ \checkmark \text{true}[/tex]
∴ the sum [tex]\displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}[/tex] is divergent by DCT.
Step 3: Apply LCT
- Define: [tex]\displaystyle a_n = \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}, \ b_n = \frac{1}{n}[/tex]
- Substitute in variables [LCT]: [tex]\displaystyle \lim_{n \to \infty} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4} \cdot n[/tex]
- Simplify: [tex]\displaystyle \lim_{n \to \infty} \frac{8n^4 - 2n^3 + 19n}{6 + 3n^4}[/tex]
- [Limit] Evaluate [Coefficient Power Rule]: [tex]\displaystyle \lim_{n \to \infty} \frac{8n^4 - 2n^3 + 19n}{6 + 3n^4} = \frac{8}{3}[/tex]
∴ Because [tex]\displaystyle \lim_{n \to \infty} \frac{a_n}{b_n} \neq 0[/tex] and the sum [tex]\displaystyle \sum^{\infty}_{n = 19} a_n[/tex] diverges by DCT, [tex]\displaystyle \sum^{\infty}_{n = 19} \frac{8n^3 - 2n^2 + 19}{6 + 3n^4}[/tex] also diverges by LCT.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Convergence Tests (BC Only)
Book: College Calculus 10e