Respuesta :

Given:

The ratio of 45-45-90 triangle is [tex]x:x:x\sqrt{2}[/tex].

The hypotenuse of the given isosceles right triangle is [tex]7\sqrt{2}[/tex].

To find:

The lengths of the other two sides of the given isosceles right triangle.

Solution:

Let [tex]l[/tex] be the lengths of the other two sides of the given isosceles right triangle.

From the given information if is clear that he ratio of equal side and hypotenuse is [tex]x:x\sqrt{2}[/tex]. So,

[tex]\dfrac{x}{x\sqrt{2}}=\dfrac{l}{7\sqrt{2}}[/tex]

[tex]\dfrac{1}{\sqrt{2}}=\dfrac{l}{7\sqrt{2}}[/tex]

[tex]\dfrac{7\sqrt{2}}{\sqrt{2}}=l[/tex]

[tex]7=l[/tex]

Therefore, the lengths of the other two sides of the given isosceles right triangle are 7 units.