Respuesta :

Nayefx

Answer:

[tex] \displaystyle a = \frac{1+vh}{v}[/tex]

Step-by-step explanation:

we want to figure out a value of a for the following condition

[tex] \displaystyle va - vh = 1[/tex]

to do so factor out v;

[tex] \displaystyle v (a - h )= 1[/tex]

divide both sides by v which yields:

[tex] \displaystyle \frac{(a-h) \cancel{(v)}}{ \cancel{v}}= \frac{1}{v} [/tex]

therefore,

[tex] \displaystyle a-h = { \frac{1}{v}}[/tex]

now,add h to both sides:

[tex] \displaystyle a = \frac{1}{v}+h[/tex]

further simplification if necessary:

[tex] \displaystyle a =\boxed{ \frac{1+vh}{v}}[/tex]

Given:-

  • [tex]\sf{va-vh=1 }[/tex]

To find:-

  • [tex]\sf{ value~ of ~a }[/tex]

Solution:-

  • [tex]\sf{ va-vh=1 }[/tex]

factor out of v

  • [tex]\sf{v(a-h)=1 }[/tex]

Dividing both sides by (v)

  • [tex]\sf{\dfrac{v(a-h)}{(v)}=\dfrac{1}{(v)} }[/tex]

cancel out (v)

  • [tex]\sf{\dfrac{\cancel{v}(a-h)}{\cancel{(v)}}=\dfrac{1}{(v)} }[/tex]

  • [tex]\sf{ a-h=\dfrac{1}{v} }[/tex]

add h in both sides

  • [tex]\sf{a-h+h=\dfrac{1}{v}+h }[/tex]

cancelout h

  • [tex]\sf{a-\cancel{h}+\cancel{h}=\dfrac{1}{v}+h }[/tex]

  • [tex]\sf{a=\dfrac{1}{v}+h }[/tex]

  • [tex]\boxed{\sf{a=\dfrac{1+vh}{v} } }[/tex]

[tex]\sf{ }[/tex] [tex]\sf{ }[/tex]

Therefore:-

the value of a if va- vh is equals to 1 is [tex]\bold{\dfrac{1+vh}{v} }[/tex]