An ideal parallel plate capacitor with a cross-sectional area of 0.4 cm2 contains a dielectric with a dielectric constant of 4 and a dielectric strength of 2 x 108 V/m. The separation between the plates of the capacitor is 5 mm. What is the maximum electric charge (in nC) that can be stored in the capacitor before dielectric breakdown

Respuesta :

Answer: [tex]283.2\times 10^{-9}\ nC[/tex]

Explanation:

Given

Cross-sectional area [tex]A=0.4\ cm^2[/tex]

Dielectric constant [tex]k=4[/tex]

Dielectric strength [tex]E=2\times 10^8\ V/m[/tex]

Distance between capacitors [tex]d=5\ mm[/tex]

Maximum charge that can be stored before dielectric breakdown is given by

[tex]\Rightarrow Q=CV\\\\\Rightarrow Q=\dfrac{k\epsilon_oA}{d}\cdot (Ed)\quad\quad [V=E\cdot d]\\\\\Rightarrow Q=k\epsilon_oAE\\\\\Rightarrow Q=4\times 8.85\times 10^{-12}\times 0.4\times 10^{-4}\times 2\times 10^8\\\\\Rightarrow Q=28.32\times 10^{-8}\\\\\Rightarrow Q=283.2\times 10^{-9}\ nC[/tex]

Answer:

The maximum charge is 7.08 x 10^-8 C.

Explanation:

Area, A = 0.4 cm^2

K = 4

Electric field, E = 2 x 10^8 V/m

separation, d = 5 mm = 0.005 m

Let the capacitance is C and the charge is q.

[tex]q = CV\\\\q=\frac{\varepsilon o A}{d}\times E d\\\\q = \varepsilon o A E\\\\q = 8.85\times 10^{-12}\times0.4\times 10^{-4}\times 2\times 10^8\\\\q = 7.08\times 10^{-8}C[/tex]