Answer:
(a) [tex]T(x) = 101 + 0.029 x[/tex]
(b) [tex]T^{-1}(x) = \frac{1000(x - 101)}{29}[/tex]
(c) See explanation
Step-by-step explanation:
[tex]T(x) = 172 + \frac{29}{1000}x[/tex]
Given
[tex]Flat = 101[/tex]
[tex]Rate = 29\ per\ 1000[/tex]
Solving (a): The function for total amount
This is calculated as:
[tex]T(x) = Flat + Rate * x[/tex]
Where:
[tex]x \to[/tex] taxable value
So, we have:
[tex]T(x) = 101 + \frac{29}{1000} * x[/tex]
[tex]T(x) = 101 + 0.029 * x[/tex]
[tex]T(x) = 101 + 0.029 x[/tex]
Solving (b): The inverse function
[tex]T(x) = 101 + 0.029 x[/tex]
Rewrite as:
[tex]y = 101 + 0.029x[/tex]
Swap the variables
[tex]x = 101 + 0.029y[/tex]
Make y the subject
[tex]0.029y = x - 101[/tex]
Divide by 0.029
[tex]y = \frac{x - 101}{0.029}[/tex]
Multiply by 1000/1000
[tex]y = \frac{1000(x - 101)}{29}[/tex]
Replace y with the inverse function
[tex]T^{-1}(x) = \frac{1000(x - 101)}{29}[/tex]
Solving (c): Interpret (b)
The inverse function, in this case; is the taxable value calculated from the amount of property tax