Given: APRS, RS=10
mZP=45º, mzS=600
Find: Perimeter of APRS

Answer:
Perimeter of ΔPRS = 35.91 units
Step-by-step explanation:
From the figure attached,
By applying triangle sum theorem in the given triangle PRS,
m∠P + m∠R + m∠S = 180°
45° + m∠R + 60° = 180°
m∠R = 75°
By applying sine rule,
[tex]\frac{\text{sinP}}{RS}= \frac{\text{sinS}}{PR}=\frac{\text{sinR}}{PS}[/tex]
[tex]\frac{\text{sin}(45^{\circ})}{10}= \frac{\text{sin}(60^{\circ})}{PR}=\frac{\text{sin}(75^{\circ})}{PS}[/tex]
[tex]\frac{\text{sin}(45^{\circ})}{10}= \frac{\text{sin}(60^{\circ})}{PR}[/tex]
PR = 12.25 units
[tex]\frac{\text{sin}(45^{\circ})}{10}=\frac{\text{sin}(75^{\circ})}{PS}[/tex]
PS = 13.66 units
Perimeter of triangle PRS = PR + PS + RS
= 12.25 + 13.66 + 10
= 35.91