Respuesta :

Answer:

Perimeter of ΔPRS = 35.91 units

Step-by-step explanation:

From the figure attached,

By applying triangle sum theorem in the given triangle PRS,

m∠P + m∠R + m∠S = 180°

45° + m∠R + 60° = 180°

m∠R = 75°

By applying sine rule,

[tex]\frac{\text{sinP}}{RS}= \frac{\text{sinS}}{PR}=\frac{\text{sinR}}{PS}[/tex]

[tex]\frac{\text{sin}(45^{\circ})}{10}= \frac{\text{sin}(60^{\circ})}{PR}=\frac{\text{sin}(75^{\circ})}{PS}[/tex]

[tex]\frac{\text{sin}(45^{\circ})}{10}= \frac{\text{sin}(60^{\circ})}{PR}[/tex]

PR = 12.25 units

[tex]\frac{\text{sin}(45^{\circ})}{10}=\frac{\text{sin}(75^{\circ})}{PS}[/tex]

PS = 13.66 units

Perimeter of triangle PRS = PR + PS + RS

                                            = 12.25 + 13.66 + 10

                                            = 35.91