Respuesta :

Answer:

[tex]\sf m\angle A = 3x - 20^o = \bf 100^o [/tex]

[tex]\sf m\angle B = 2x = \bf 80^o [/tex]

[tex]\sf m\angle C = 2x - 15^o = \bf 65^o [/tex]

Step-by-step explanation:

A figure is given to us , in which two lines are parallel to each other. There are two transversals to the || lines . We know that the measure of a straight line is 180° . Therefore ,

[tex]\sf\longrightarrow \angle A +\angle B = 180^o [/tex]

Substitute the given values ,

[tex]\sf\longrightarrow 3x - 20^o + 2x = 180^o [/tex]

Simplify the RHS by adding the variables ,

[tex]\sf\longrightarrow 5x - 20^o = 180^o [/tex]

Add 20° to both sides ,

[tex]\sf\longrightarrow 5x = 180^o + 20^o [/tex]

Add the numbers in RHS ,

[tex]\sf\longrightarrow 5x = 200^o [/tex]

Divide both sides by 5 ,

[tex]\sf\longrightarrow \boxed{\blue{\sf x = 40^o}}[/tex]

Therefore ,

  • [tex]\sf m\angle A = 3x - 20^o = \bf 100^o [/tex]

  • [tex]\sf m\angle B = 2x = \bf 80^o [/tex]

  • [tex]\sf m\angle C = 2x - 15^o = \bf 65^o [/tex]