Answer:
b. 0.0228
Step-by-step explanation:
We are given that
n=40
Mean,[tex]\mu=402.7 g[/tex]
Standard deviation, [tex]\sigma=8.8[/tex]g
We have to find the probability hat the mean weight for a sample of 40 summer squash exceeds 405.5 grams.
[tex]P(x>405.5)=P(\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}>\frac{405.5-402.7}{\frac{8.8}{\sqrt{40}}})[/tex]
[tex]P(x>405.5)=P(Z>\frac{2.8}{\frac{8.8}{\sqrt{40}}})[/tex]
[tex]P(x>405.5)=P(Z>2.01)[/tex]
[tex]P(x>405.5)=1-P(Z\leq 2.01)[/tex]
[tex]P(x>405.5)=1-0.977784[/tex]
[tex]P(x>405.5)=0.022216[/tex]
Hence, option b is correct.