Answer:
0.00084
Step-by-step explanation:
We are given that
Mean,[tex]\mu=2400[/tex] square feet
Standard deviation, [tex]\sigma=450[/tex]square feet
n=50
We have to find the probability that a random sample of 50 homes in Anytown, USA has mean square footage less than 2200 square feet.
[tex]P(x<2200)=P(\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}<P(\frac{2200-2400}{\frac{450}{\sqrt{50}}})[/tex]
[tex]P(x<2200)=P(Z<\frac{-200}{\frac{450}{\sqrt{50}}})[/tex]
Using the formula
[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]P(x<2200)=P(Z<-3.14)[/tex]
[tex]P(X<2200)=0.00084[/tex]
Hence, the probability that a random sample of 50 homes in Anytown, USA has mean square footage less than 2200 square feet=0.00084