On a coordinate plane, triangles R S T and L M N are shown. Triangle R S T has points (5, 5), (2, 1), and (1, 3). Triangle L M N has points (0, negative 1), (2, negative 4), and (negative 2, negative 3). How does the area of triangle RST compare to the area of triangle LMN

Respuesta :

Answer:

LMN has a larger area

Step-by-step explanation:

Given

RST

[tex]R =(5,5)[/tex]

[tex]S= (2,1)[/tex]

[tex]T = (1,3)[/tex]

LMN

[tex]L = (0,-1)[/tex]

[tex]M= (2,-4)[/tex]

[tex]N= (-2,-3)[/tex]

Required

Compare both areas

The area of triangle is:

[tex]Area = \frac{1}{2}|x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3|[/tex]

For RST, we have:

[tex]Area = \frac{1}{2}|5*1 - 2*5 + 2*3 - 1*1 + 1*5 - 5*3|[/tex]

[tex]Area = \frac{1}{2}|-10|[/tex]

Remove absolute signs

[tex]Area = \frac{1}{2}*10[/tex]

[tex]Area = 10[/tex]

For LMN, we have:

[tex]Area = \frac{1}{2}|x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3|[/tex]

[tex]Area = \frac{1}{2}|0*-4-2*-1+2*-3--2*-4--2*-1-0*-3|[/tex]

[tex]Area = \frac{1}{2}|-14|[/tex]

Remove absolute signs

[tex]Area = \frac{1}{2}*14[/tex]

[tex]Area = 7[/tex]

By comparing both areas, we can conclude that LMN has a larger area