Hello!
[tex]\bf y = ( x + 3 )^{2} - 5 [/tex]
- Separate the function into parts to determine the domain of each part.
[tex]\bf ( x + 3 )^{2} \\ x + 3 \\ 5 [/tex]
- The domain of a polynomial function is the set of all real numbers.
[tex]\bf x ∈ ℝ [/tex]
Domain: ( -∞; ∞ )
[tex]\bf y = ( x + 3 )^{2} - 5 [/tex]
- Write the second degree function in standard form.
[tex]\bf y = x^{2} + 6x + 4 [/tex]
- Identifies the coefficients a and b of the second degree function.
[tex]\bf a = 1, b = 6 [/tex]
- Find the x coordinate of the vertex by substituting a = 1 and b = 6 in x = -b / 2a.
[tex]\bf x = -\frac{6}{2×1} [/tex]
[tex]\bf x = -\frac{6}{2} [/tex]
[tex]\bf x = -3 [/tex]
- Calculates the value of the function for x = -3.
[tex]\bf y = ( x + 3 )^{2} - 5 [/tex]
[tex]\bf y = -5 [/tex]
Range: ( -3; -5 )
Answer: No answer
Good luck! :)