The value of cos(A - B) is approximately 23/25
Given that A and B are in the second quadrant, we have
To find cos(A - B), we have to use trigonometric functions
cos(A - B) = cosAcosB + sinAsinB ...equation(i)
but
cos A
[tex]cos^2A + sin^2A =1 \\cos^2A = 1 - sin^2A\\cos^2A = 1 - (\frac{3}{7})^2 = 1 - \frac{9}{49}= cosA= -\frac{2\sqrt{5} }{7}[/tex]
Having the value of cos A, let's solve for cosB
Cos B
cos B = -2/5
[tex]sin^2B = 1-cos^2B\\sin^2B = 1-(-\frac{2}{5})^2= 1-\frac{4}{25}\\sinB = \sqrt{\frac{21}{25} }=\frac{\sqrt{21} }{5}[/tex]
cos(A-B)
substituting the values if sinA, cosA, sinB, cosB into equation(i) above;
[tex]cos(A-B)=cosAcosB+sinAsinB\\cos(A-B)=(-\frac{2\sqrt{5} }{7})(-\frac{2}{5})+(\frac{3}{7})(\frac{\sqrt{21} }{5})\\cos(A-B)=\frac{3\sqrt{21}+4\sqrt{5} }{35} \\cos(A-B) = 23/35[/tex]
The value of cos(A-B) is given above
Learn more on trigonometric functions here;
https://brainly.com/question/4326804