Respuesta :

Answer: [tex]864\ m^2,\ 24\ m[/tex]

Step-by-step explanation:

Given

Perimeter of the rhombus is [tex]120\ m[/tex]

Length of one of the diagonal is [tex]d_1=36\ m[/tex]

All the sides of the rhombus are equal

[tex]\Rightarrow 4a=120\\\Rightarrow a=30\ m[/tex]

Area of the rhombus with side and one diagonal is

[tex]\Rightarrow \text{Area=}\dfrac{1}{2}d\sqrt{4a^2-d^2}[/tex]

Insert the values

[tex]\Rightarrow \text{Area=}\dfrac{1}{2}\times 36\times \sqrt{4\cdot 30^2-36^2}\\\\\Rightarrow \text{Area= }18\sqrt{3600-1296}\\\Rightarrow \text{Area= }18\times 48\\\Rightarrow \text{Area= }864\ m^2[/tex]

Area with two diagonals length can be given by

[tex]\Rightarrow \text{Area =}0.5\times d_1\times d_2 \\\text{Insert the values}\\\Rightarrow 864=36\times d_2\\\Rightarrow d_2=24\ m[/tex]

Thus, the area of the rhombus is [tex]864\ m^2[/tex] and the length of the other diagonal is [tex]24\ m[/tex]