Answer:
(a) Altitude = 1.95 x 10⁶ m = 1950 km
(b) g = 5.9 m/s²
Explanation:
(a)
The time period of the satellite is given by the following formula:
[tex]T^2 = \frac{4\pi^2r^3}{GM_E}[/tex]
where,
T = Time period = (125 min)([tex]\frac{60\ s}{1\ min}[/tex]) = 7500 s
r = distance of satellite from the center of earth = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
[tex]M_E[/tex] = Mass of Earth = 6 x 10²⁴ kg
Therefore,
[tex](7500\ s)^2 = \frac{4\pi^2r^3}{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(6\ x\ 10^{24}\ kg)}\\\\r^3 = \frac{(7500\ s)^2(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(6\ x\ 10^{24}\ kg)}{4\pi^2}\\\\r = \sqrt[3]{5.7\ x\ 10^{20}\ m^3} \\[/tex]
r = 8.29 x 10⁶ m
Hence, the altitude of the satellite will be:
[tex]Altitude = r - radius\ of\ Earth\\Altitude = 8.29\ x\ 10^6\ m - 6.34\ x\ 10^6\ m[/tex]
Altitude = 1.95 x 10⁶ m = 1950 km
(b)
The weight of the satellite will be equal to the gravitational force between satellite and Earth:
[tex]Weight = Gravitational\ Force\\\\M_sg = \frac{GM_EM_s}{r^2}\\\\g = \frac{GM_E}{r^2}\\\\g = \frac{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(6\ x\ 10^{24}\ kg)}{(8.23\ x\ 10^6\ m)^2}[/tex]
g = 5.9 m/s²