Answer:
density of second liquid = 650 kg/m³
Explanation:
Given that:
The volume of the plastic block submerged inside the water = 0.5 V
The force on the plastic block = [tex]\rho_1V_1g[/tex]
[tex]= 0.5p_1 V_g[/tex]
when the block is floating, the weight supporting the force (buoyancy force) is:
W [tex]= 0.5p_1 V_g[/tex]
[tex]\rho Vg = 0.5p_1 V_g[/tex]
[tex]\rho = 0.5 \rho _1[/tex]
where;
water density [tex]\rho _1[/tex] = 1000
[tex]\rho = 0.5 (1000)[/tex]
[tex]\rho = 500 kg/m^3[/tex]
In the second liquid, the volume of plastic block in the water = (100-23)%
= 77% = 0.7 V
The force on the plastic block is:
[tex]= 0.77p_2 V_g[/tex]
when the block is floating, the weight supporting the force (buoyancy force) is:
[tex]W = 0.77p_2 V_g[/tex]
[tex]\rho Vg = 0.77 \rho_2 V_g \\ \\ \rho = 0.77 \rho_2 \\ \\ 500 = 0.77 \rho_2 \\ \\ \rho_2 = 500/0.77[/tex]
[tex]\mathbf{ \rho_2 \simeq 650 \ kg/m^3}[/tex]