The mean monthly rent for a one-bedroom apartment without a doorman in Manhattan is 2630. Assume the standard deviation is$500 . A real estate firm samples 100 apartments. Use the TI-84 Plus calculator.a) What is the probability that the sample mean rent is greater than $27007?b) What is the probability that the sample mean rent is between $2450 and $2550? c) Find the 25th percentile of the sample mean. d) Would it be unusual if the sample mean were greater than $26457?e) Do you think it would be unusual for an individual to have a rent greater than $2645? Explain. Assume the variable is normally distributed.

Respuesta :

Answer:

a) 0.0808 = 8.08% probability that the sample mean rent is greater than $2700.

b) 0.0546 = 5.46% probability that the sample mean rent is between $2450 and $2550.

c) The 25th percentile of the sample mean is of $2596.

d) |Z| = 0.3 < 2, which means it would not be unusual if the sample mean was greater than $2645.

e) |Z| = 0.3 < 2, which means it would not be unusual if the sample mean was greater than $2645.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

If |Z|>2, the measure X is considered unusual.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The mean monthly rent for a one-bedroom apartment without a doorman in Manhattan is $2630. Assume the standard deviation is $500.

This means that [tex]\mu = 2630, \sigma = 500[/tex]

Sample of 100:

This means that [tex]n = 100, s = \frac{500}{\sqrt{100}} = 50[/tex]

a) What is the probability that the sample mean rent is greater than $2700?

This is the 1 subtracted by the p-value of Z when X = 2700. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{2700 - 2630}{50}[/tex]

[tex]Z = 1.4[/tex]

[tex]Z = 1.4[/tex] has a p-value 0.9192

1 - 0.9192 = 0.0808

0.0808 = 8.08% probability that the sample mean rent is greater than $2700.

b) What is the probability that the sample mean rent is between $2450 and $2550?

This is the p-value of Z when X = 2550 subtracted by the p-value of Z when X = 2450.

X = 2550

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{2550 - 2630}{50}[/tex]

[tex]Z = -1.6[/tex]

[tex]Z = -1.6[/tex] has a p-value 0.0548

X = 2450

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{2450 - 2630}{50}[/tex]

[tex]Z = -3.6[/tex]

[tex]Z = -3.6[/tex] has a p-value 0.0002

0.0548 - 0.0002 = 0.0546.

0.0546 = 5.46% probability that the sample mean rent is between $2450 and $2550.

c) Find the 25th percentile of the sample mean.

This is X when Z has a p-value of 0.25, so X when Z = -0.675.

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]-0.675 = \frac{X - 2630}{50}[/tex]

[tex]X - 2630 = -0.675*50[/tex]

[tex]X = 2596[/tex]

The 25th percentile of the sample mean is of $2596.

Question d and e)

We have to find the z-score when X = 2645.

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{2645 - 2630}{50}[/tex]

[tex]Z = 0.3[/tex]

|Z| = 0.3 < 2, which means it would not be unusual if the sample mean was greater than $2645.