Missing from the question
Aletheia's speed is 0.6 miles per hour slower than Elvira's speed.
Answer:
[tex]s_E = 3.0[/tex]
[tex]s_A = 2.4[/tex]
Step-by-step explanation:
Given
[tex]d = 3.2m[/tex] -- distance
[tex]t_E = 1/2[/tex] --- Elvira time
[tex]t_A = 2/3[/tex] --- Aletheia time
[tex]s_E - s_A = 0.6[/tex] --- the relationship between their speeds
Required
Their walking speed
Distance (d) is calculated as:
[tex]d = speed * time[/tex]
For Elvira, we have:
[tex]d_E = s_E * 1/2[/tex]
For Aletheia, we have:
[tex]d_A = s_A * 2/3[/tex]
So, we have:
[tex]d_E + d_A = d[/tex] --- total distance
This gives:
[tex]s_E * 1/2 + s_A * 2/3 = 3.2[/tex]
Recall that:
[tex]s_E - s_A = 0.6[/tex]
Make sE the subject
[tex]s_E = 0.6+s_A[/tex]
Substitute [tex]s_E = 0.6+s_A[/tex] in [tex]s_E * 1/2 + s_A * 2/3 = 3.2[/tex]
[tex](0.6+s_A)* 1/2 + s_A * 2/3 = 3.2[/tex]
[tex]0.3+1/2s_A + 2/3s_A = 3.2[/tex]
Collect like terms
[tex]1/2s_A + 2/3s_A = 3.2-0.3[/tex]
[tex]1/2s_A + 2/3s_A = 2.9[/tex]
Express all as decimal
[tex]0.5s_A + 0.7s_A= 2.9[/tex]
[tex]1.2s_A= 2.9[/tex]
Divide both sides by 1.2
[tex]s_A = 2.4[/tex]
Recall that:
[tex]s_E = 0.6+s_A[/tex]
So, we have:
[tex]s_E = 0.6+2.4[/tex]
[tex]s_E = 3.0[/tex]