Answer:
k ≥ 4
Step-by-step explanation:
A Quadratic equation is given to us and we need to find out the value of k for which the equation has real roots. The given equation is ,
[tex]\rm\implies kx^2 +4x +1=0[/tex]
With respect to Standard form of Quadratic equation :-
[tex]\rm\implies ax^+bx+c=0[/tex]
For real roots ,
[tex]\rm\implies Discriminant = b^2-4ac\geq 0[/tex]
Substitute the respective values ,
[tex]\rm\implies b^2-4ac \geq 0\\[/tex]
[tex]\rm\implies 4^2 - 4(k)(1) \geq 0 \\[/tex]
Simplify the LHS ,
[tex]\rm\implies 16 - 4k \geq 0 \\[/tex]
Add 4k both sides ,
[tex]\rm\implies 4k\geq 16 [/tex]
Divide both sides by 4 ,
[tex]\rm\implies \boxed{\blue{\rm k \geq 4}}[/tex]