Respuesta :

Answer:

k ≥ 4

Step-by-step explanation:

A Quadratic equation is given to us and we need to find out the value of k for which the equation has real roots. The given equation is ,

[tex]\rm\implies kx^2 +4x +1=0[/tex]

With respect to Standard form of Quadratic equation :-

[tex]\rm\implies ax^+bx+c=0[/tex]

For real roots ,

[tex]\rm\implies Discriminant = b^2-4ac\geq 0[/tex]

Substitute the respective values ,

[tex]\rm\implies b^2-4ac \geq 0\\[/tex]

[tex]\rm\implies 4^2 - 4(k)(1) \geq 0 \\[/tex]

Simplify the LHS ,

[tex]\rm\implies 16 - 4k \geq 0 \\[/tex]

Add 4k both sides ,

[tex]\rm\implies 4k\geq 16 [/tex]

Divide both sides by 4 ,

[tex]\rm\implies \boxed{\blue{\rm k \geq 4}}[/tex]