Answer:
a) Q = 1.24 10⁻² pC, b) Q = 8.68 10⁻² pC
Explanation:
a) the capacitance is defined
C = [tex]\frac{Q}{\Delta V} = \epsilon_o \frac{A}{d}[/tex]
Q = ε₀ [tex]\frac{A}{d} \ \Delta V[/tex]
let's calculate
Q = 8.85 10⁻¹² 0.07 [tex]\frac{A}{d}[/tex]
Q = 0.6195 10⁻¹² [tex]\frac{A}{d}[/tex]
where a is the area of the membrane
A = d L
Q = 0.6195 10⁻¹² Ll
Q = 0.6195 10⁻¹² 0.02
Q = 1.24 10⁻¹⁰ C
Q = 1.24 10⁻² pC
B) the membrane is full of fat with k = 7
C = [tex]\frac{Q}{\Delta V} = k \epsilon_o \ \frac{A}{d}[/tex]
Q = k ε₀ [tex]\frac{A}{d} \ \Delta V[/tex]
Q = k Q₀
Q = 7 1.24 10⁻²
Q = 8.68 10⁻² pC