4. Find the missing parts of the triangle. Round to the nearest tenth when necessary or to the nearest minute as appropriate.
C = 119.90
a = 4.7 km
b = 8.1 km

4 Find the missing parts of the triangle Round to the nearest tenth when necessary or to the nearest minute as appropriate C 11990 a 47 km b 81 km class=

Respuesta :

Answer:

The missing parts of the triangle are [tex]c \approx 11.2\,km[/tex], [tex]A\approx 21.3^{\circ}[/tex] and [tex]B \approx 38.8^{\circ}[/tex], respectively.

Step-by-step explanation:

A triangle is formed by three sides and three angles, a side and two angles are missing ([tex]c[/tex], [tex]A[/tex], [tex]B[/tex]).

The length of the missing side is found by the Law of Cosine:

[tex]c = \sqrt{a^{2}+b^{2}-2\cdot a \cdot b\cdot \cos C}[/tex] (1)

([tex]a = 4.7\,km[/tex], [tex]b = 8.1\,km[/tex], [tex]C = 119.90^{\circ}[/tex])

[tex]c = \sqrt{(4.7\,km)^{2}+(8.1\,km)^{2}-2\cdot (4.7\,km)\cdot (8.1\,km)\cdot \cos 119.90^{\circ}}[/tex]

[tex]c \approx 11.2\,km[/tex]

And the missing angles can be determined by the Law of Sine:

[tex]\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}[/tex]

([tex]a = 4.7\,km[/tex], [tex]b = 8.1\,km[/tex], [tex]c \approx 11.210\,km[/tex], [tex]C = 119.9^{\circ}[/tex])

[tex]A \approx \sin^{-1}\left(\frac{a}{c} \times \sin C \right)[/tex]

[tex]A \approx \sin^{-1} \left(\frac{4.7\,km}{11.210\,km}\times \sin 119.9^{\circ} \right)[/tex]

[tex]A\approx 21.3^{\circ}[/tex]

[tex]B \approx \sin^{-1} \left(\frac{b}{c}\times \sin C \right)[/tex]

[tex]B\approx \sin^{-1}\left(\frac{8.1\,km}{11.210\,km}\times \sin 119.9^{\circ} \right)[/tex]

[tex]B \approx 38.8^{\circ}[/tex]

The missing parts of the triangle are [tex]c \approx 11.2\,km[/tex], [tex]A\approx 21.3^{\circ}[/tex] and [tex]B \approx 38.8^{\circ}[/tex], respectively.