Respuesta :

Answer:

625 ft^2

Step-by-step explanation:

Given

[tex]P = 100[/tex] --- perimeter

Required

The largest area

The perimeter is calculated as:

[tex]P = 2 * ( L + W)[/tex]

So, we have:

[tex]2 * ( L + W) = 100[/tex]

Divide both sides by 2

[tex]L + W = 50[/tex]

Make  L the subject

[tex]L = 50 - W[/tex]

The area is calculated as:

[tex]A= L * W[/tex]

Substitute [tex]L = 50 - W[/tex]

[tex]A= (50 - W) * W[/tex]

Open bracket

[tex]A = 50W - W^2[/tex]

Differentiate with respect to W

[tex]A' = 50 -2W[/tex]

Set to 0; to get the maximum value of W

[tex]50 - 2W = 0[/tex]

Collect like terms

[tex]-2W = -50[/tex]

Divide by -2

[tex]W = 25[/tex]

So, the maximum area is:

[tex]A = 50W - W^2[/tex]

[tex]A = 50 * 25 - 25^2[/tex]

[tex]A = 1250 - 625[/tex]

[tex]A = 625[/tex]