Respuesta :

Answer:

[tex] x = 8.57[/tex]

Step-by-step explanation:

Here two triangles are given to us , which are attached to each other . Here we can use the concept of Trigonometry to find out the value of x. The angles of the triangle are 60° and 45° . Let the common side be p .

Step 1: Use the ratio of tan in upper triangle

[tex]\rm\implies tan60^o = \dfrac{perpendicular}{base} [/tex]

Substitute the respective values ,

[tex]\rm\implies \sqrt3=\dfrac{p}{7} [/tex]

Cross multiply ,

[tex]\rm\implies p = 7\sqrt3 [/tex]

Step 2: Use the ratio of cos in lower triangle

[tex]\rm\implies cos45^o = \dfrac{base}{hypontenuse} [/tex]

Substitute the respective values ,

[tex]\rm\implies \dfrac{1}{\sqrt2}=\dfrac{x}{7\sqrt3} [/tex]

Cross multiply ,

[tex]\rm\implies x= \dfrac{7\sqrt3}{\sqrt2} [/tex]

Put the approximate values of √2 and √3

[tex]\rm\implies x= \dfrac{7\times 1.732}{1.414} [/tex]

This equals to ,

[tex]\rm\implies \boxed{\blue{\rm \quad x = 8.57\quad}} [/tex]

Hence the value of x is 8.57 .

msm555

Answer:

The value of x is [tex]\frac{7\sqrt{6}}{2}[/tex]

Solution given:

AB=7

BD=x

<BAC=60°

<DBC=45°

In right angled triangle ABC

Tan 60°=opposite/adjacent

Tan 60°=BC/AB

Substitute value

[tex]\sqrt{3}[/tex]=[tex]\frac{BC}{7}[/tex]

BC=[tex]7\sqrt{3}[/tex]

again

againIn right angled triangle BCD

againIn right angled triangle BCDUsing Cos angle

Cos 45=adjacent/hypotenuse

Cos45°=BD/BC

Substituting value

[tex]\frac{\sqrt{2}}{2}=\frac{x}{7\sqrt{3}}[/tex]

Doing criss cross multiplication

[tex]\frac{\sqrt{2}}{2}*7\sqrt{3}=x[/tex]

x=[tex]\frac{7\sqrt{6}}{2}[/tex]

Ver imagen msm555