Use the algebraic rules for even and odd functions to classify each function as even odd or neither

Answer:
Step-by-step explanation:
f(x)=-2x³+x-3
-f(x)=2x³-x+3
f(-x)=-2(-x)³+(-x)-3
=2x³-x-3
it is not equal to f(x) or -f(x)
so it is neither even or odd.
[tex]f(x)=\frac{x+5}{x} \\f(-x)=\frac{-x+5}{-x} =\frac{x-5}{x} \\it ~is~neither~equal~to~f(x)~or~-f(x)\\[/tex]
it is neither even or odd.
f(x)=x^4-x^2+10
f(-x)=(-x)^4-(-x)^2+10=x^4-x^2+10=f(x)
it is an even function.
[tex]f(x)=\frac{5}{-x^2+1} \\f(-x)=\frac{5}{-(-x)^2+1} =\frac{5}{-x^2+1} =f(x)\\[/tex]
it is an even function.
[tex]f(x)=\frac{-2}{5x} \\f(-x)=\frac{-2}{-5x} =\frac{2}{5x} =-f(x)\\it~ is ~an ~odd ~function.\\[/tex]
f(x)=x^9-x^5+4x^3
f(-x)=(-x)^9-(-x)^5+4(-x)^3
=-x^9+x^5-4x^3
=-(x^9-x^5+4x^3)
=-f(x)
it is an odd function.