Respuesta :
Answer:
[tex]\displaystyle V = \frac{2048 \pi}{3} \ cm^3[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Geometry
Volume of a Sphere Formula: [tex]\displaystyle V = \frac{4 \pi}{3}r^3[/tex]
- r is radius
Step-by-step explanation:
Step 1: Define
Identify variables
r = 8 cm
Step 2: Find Volume
- Substitute in variables [Volume of a Sphere Formula]: [tex]\displaystyle V = \frac{4 \pi}{3}(8 \ cm)^3[/tex]
- Evaluate exponents: [tex]\displaystyle V = \frac{4 \pi}{3}(512 \ cm^3)[/tex]
- Multiply: [tex]\displaystyle V = \frac{2048 \pi}{3} \ cm^3[/tex]
Answer:
sphere
Step-by-step explanation:
volume of a sphere = 4/3πr³
= 4/3*22/7 * 8³
= 2145.5