Respuesta :
The answer is [tex]y = -6( x- \frac{1}{4}) ^{2}+3[/tex]
Regular form: y = ax² + bx + c
Vertex form: y = a(x - h)² + k
(h, k) - vertex
[tex]y = -6 x^{2} +3x+2 \\ y -2=-6 x^{2} +3x \\ y-2+6*=-6* x^{2} +6* \frac{1}{2} x \\ \\ y-2-6* \frac{1}{16} =-6* x^{2} +6* \frac{1}{2} x -6* \frac{1}{16} \\ \\ y -2 -\frac{6}{16} =-6( x^{2} -\frac{1}{2} x+\frac{1}{16}) \\ \\ y- \frac{2*16}{16} -\frac{6}{16} =-6( x^{2} -\frac{1}{2} x+(\frac{1}{4})^{2} ) \\ \\ y - \frac{32}{16} -\frac{6}{16} = -6( x- \frac{1}{4}) ^{2} \\ \\ y - \frac{32+6}{16} = -6( x- \frac{1}{4}) ^{2} \\ \\ y - \frac{48}{16} = -6( x- \frac{1}{4}) ^{2} \\ \\ [/tex]
[tex]y - 3= -6( x- \frac{1}{4}) ^{2} \\ \\ y = -6( x- \frac{1}{4}) ^{2}+3 [/tex]
Regular form: y = ax² + bx + c
Vertex form: y = a(x - h)² + k
(h, k) - vertex
[tex]y = -6 x^{2} +3x+2 \\ y -2=-6 x^{2} +3x \\ y-2+6*=-6* x^{2} +6* \frac{1}{2} x \\ \\ y-2-6* \frac{1}{16} =-6* x^{2} +6* \frac{1}{2} x -6* \frac{1}{16} \\ \\ y -2 -\frac{6}{16} =-6( x^{2} -\frac{1}{2} x+\frac{1}{16}) \\ \\ y- \frac{2*16}{16} -\frac{6}{16} =-6( x^{2} -\frac{1}{2} x+(\frac{1}{4})^{2} ) \\ \\ y - \frac{32}{16} -\frac{6}{16} = -6( x- \frac{1}{4}) ^{2} \\ \\ y - \frac{32+6}{16} = -6( x- \frac{1}{4}) ^{2} \\ \\ y - \frac{48}{16} = -6( x- \frac{1}{4}) ^{2} \\ \\ [/tex]
[tex]y - 3= -6( x- \frac{1}{4}) ^{2} \\ \\ y = -6( x- \frac{1}{4}) ^{2}+3 [/tex]
we have
[tex] y = -6x^{2} + 3x + 2 [/tex]
we know that
the vertex form of the vertical parabola equation is equal to
[tex] y=a(x-h)^{2} +k [/tex]
where
(h,k) is the vertex of the parabola
To find the equation rewritten in vertex form let's factor the equation
Factor the leading coefficient
[tex] y = -6(x^{2} - 0.5x) + 2 [/tex]
Complete the square. Remember to balance the equation by adding the same constants to each side
[tex] y = -6(x^{2} - 0.5x+0.0625-0.0625) + 2 [/tex]
[tex] y = -6(x^{2} - 0.5x+0.0625) + 2 +0.375 [/tex]
[tex] y = -6(x^{2} - 0.5x+0.0625) + 2.375 [/tex]
Rewrite as perfect squares
[tex] y = -6(x-0.25)^{2} + 2.375 [/tex]
therefore
the answer is
[tex] y = -6(x-0.25)^{2} + 2.375 [/tex]