The diagonal of a square is x units. What is the area of the square in terms of x?

square units
square units
2x square units
square units

Respuesta :

Let

b------> the length side of a square

we know that

the area of a square is equal to

[tex]A=b^{2}[/tex]

Find the length side of the diagonal applying the Pythagoras Theorem

[tex]d^{2}=b^{2}+b^{2}[/tex]

[tex]d^{2}=2b^{2}[/tex]

[tex]d=b\sqrt{2}\ units[/tex]

Remember that

[tex]d=x\ units[/tex] -----> given problem

substitute

[tex]d=b\sqrt{2}\ units[/tex]

[tex]x=b\sqrt{2}\ units[/tex]

Solve for b

[tex]b=\frac{x\sqrt{2}}{2}\ units[/tex]

Substitute in the formula of area

[tex]A=(\frac{x\sqrt{2}}{2})^{2}[/tex]

[tex]A=\frac{x^{2}}{2}\ units^{2}[/tex]

therefore

the answer is

[tex]\frac{x^{2}}{2}\ units^{2}[/tex]