The graph of a sinusoidal function intersects its midline at (0,5) and then has a maximum point at (\pi,6)

Write the formula of the function, where x is entered in radians.

f(x)=

Respuesta :

First, let's use the given information to determine the function's amplitude, midline, and period. 

Then, we should determine whether to use a sine or a cosine function, based on the point where x=0.

Finally, we should determine the parameters of the function's formula by considering all the above.
     
                      Determining the amplitude, midline, and period 

The midline intersection is at y=5 so this is the midline. 

The maximum point is 1 unit above the midline, so the amplitude is 1. 

The maximum point is π units to the right of the midline intersection, so the period is 4 * π.
 
                                                 Determining the type of function to use 

Since the graph intersects its midline at x=0, we should use thesine function and not the cosine function. 

This means there's no horizontal shift, so the function is of the form -

a sin(bx)+d


Since the midline intersection at x=0 is followed by a maximumpoint, we know that a > 0.

The amplitude is 1, so |a| = 1. 
Since a >0 we can conclude that a=1. 

The midline is y=5, so d=5. 

The period is 4π so b = 2π / 4π = 1/2 simplified. 

[tex]f(x) = 1 sin ( \dfrac{1}{2}x)+5[/tex]   = Solution 

Answer:

f(x)=1sin(1/2x)+5

Step-by-step explanation: